Longest Increasing Subsequence

By Adri Wessels
IOI Training Camp 3 (9-10 March 2019)

The Problem:

Given a sequence (e.g. 10, 2, 6, 13, 4, 5) find a subsequence (e.g. 2, 13,4) such that the subsequence is the longest (strictly) increasing subsequence.

The Solution:

The solution uses DP.
Let sea be the array containing the sequences.
We let mem be an array where mem[j] stores the index k of the smallest sea[k] such that there is an increasing subsequence of length j ending with sea[k].
We let prev[j] store the second last number in the longest increasing subsequence ending at sea[i].

Now we build up mem by noticing that if seali] is less than sea[mem[j]] and sea[i] is greater than sea[mem[j-1]] then mem[j] should be i because then you end the subsequence with a lower number.

The Solution:

Also prev[i] is then set to mem[j-1] because at this point in time the sequence ending with seg[mem[j-1]] is the smallest sequence that is j-1 long and thus the optimal choice to go before I in a subsequence.

We then iterate over the entire list and fill in mem and prev while keeping track of the length of our longest increasing subsequence.

At the end we start at mem[length] and work backwards along the subsequence by using prev to eventually get the full sequence.

The Example:

We will use the commonly used example from wikipedia which is the sequence:

$$
0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15
$$

Reminder:
mem[j] = k s.t. s[k] is the smallest last number in an increasing subsequence of length j.
$\operatorname{prev}[j]=$ the second last number in the longest increasing subsequence ending at sea[i].

The Example:

Indices:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Seg:	0	8	4	12	2	10	6	14	1	9	5	13	3	11	7	15

current index $i=-1$
mem: 0
Prev:

Reminder:
mem[j] = k s.t. $s[k]$ is the smallest last number in an increasing subsequence of length j.
$\operatorname{prev}[j]$ = the second last number in the longest increasing subsequence ending at sea[j].

The Example:

Indices:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Sed:	0	8	4	12	2	10	6	14	1	9	5	13	3	11	7	15

current index $i=0$
Mem: 0, 0
Prev: o

Reminder:
mem[j] = k s.t. $s[k]$ is the smallest last number in an increasing subsequence of length j.
$\operatorname{prev}[j]$ = the second last number in the longest increasing subsequence ending at sea[j].

The Example:

Indices:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Seq:	0	8	4	12	2	10	6	14	1	9	5	13	3	11	7	15

current index $i=1$;
mem: 0, 0, 1
Prev: 0,0

Reminder:
mem[j] = k s.t. $s[k]$ is the smallest last number in an increasing subsequence of length j.
$\operatorname{prev}[j]$ = the second last number in the longest increasing subsequence ending at sea[j].

The Example:

Indices:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Seq:	I															
0	8	4	12	2	10	6	14	1	9	5	13	3	11	7	15	

current index $i=2$;
Mem: 0, 0, 2
Prev: $0,0,0$

Reminder:
mem[j] = k s.t. $s[k]$ is the smallest last number in an increasing subsequence of length j.
$\operatorname{prev}[j]$ = the second last number in the longest increasing subsequence ending at sea[j].

The Example:

Indices:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Sed:	0	8	4	12	2	10	6	14	1	9	5	13	3	11	7	15

current index $i=3$;
Mem: $0,0,2,3$
Prev: $0,0,0,2$

Reminder:
mem[j] = k s.t. $s[k]$ is the smallest last number in an increasing subsequence of length j.
$\operatorname{prev}[j]$ = the second last number in the longest increasing subsequence ending at sea[j].

The Example:

Indices:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Sed:	0	8	4	12	2	10	6	14	1	9	5	13	3	11	7	15

current index i = 4;
Mem: $0,0,4,3$
Prev: $0,0,0,2,0$

Reminder:
mem[j] = k s.t. $s[k]$ is the smallest last number in an increasing subsequence of length j.
$\operatorname{prev}[j]$ = the second last number in the longest increasing subsequence ending at sea[j].

The Example:

Indices:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Seq:	0	8	4	12	2	10	6	14	1	9	5	13	3	11	7	15

current index $i=5$;
Mem: $0,0,4,5$
Prev: $0,0,0,2,0,4$

Reminder:
mem[j] = k s.t. $s[k]$ is the smallest last number in an increasing subsequence of length j.
$\operatorname{prev}[j]$ = the second last number in the longest increasing subsequence ending at sea[j].

The Example:

Indices:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Seq:	0	8	4	12	2	10	6	14	1	9	5	13	3	11	7	15

current index $i=6$;
Mem: $0,0,4,6$
Prev: $0,0,0,2,0,4,4$

Reminder:
mem[j] = k s.t. $s[k]$ is the smallest last number in an increasing subsequence of length j.
$\operatorname{prev}[j]$ = the second last number in the longest increasing subsequence ending at sea[j].

The Example:

Indices:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Seq:	0	8	4	12	2	10	6	14	1	9	5	13	3	11	7	15

current index $i=7$;
Mem: $0,0,4,6,7$
Prev: $0,0,0,2,0,4,4,6$

Reminder:
mem[j] = k s.t. $s[k]$ is the smallest last number in an increasing subsequence of length j.
$\operatorname{prev}[j]$ = the second last number in the longest increasing subsequence ending at sea[j].

The Example:

Indices:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Seq:	0	8	4	12	2	10	6	14	1	9	5	13	3	11	7	15

current index $i=8$;
Mem: $0,0,8,6,7$
Prev: $0,0,0,2,0,4,4,6,0$

Reminder:
mem[j] = k s.t. $s[k]$ is the smallest last number in an increasing subsequence of length j.
$\operatorname{prev}[j]$ = the second last number in the longest increasing subsequence ending at sea[j].

The Example:

Indices:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Seq:	I															
0	8	4	12	2	10	6	14	1	9	5	13	3	11	7	15	

current index $i=9$;
Mem: $0,0,8,6,9$
Prev: $0,0,0,2,0,4,4,6,0,6$

Reminder:
mem[j] = k s.t. $s[k]$ is the smallest last number in an increasing subsequence of length j.
$\operatorname{prev}[j]$ = the second last number in the longest increasing subsequence ending at sea[j].

The Example:

Indices:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Seq:	0	8	4	12	2	10	6	14	1	9	5	13	3	11	7	15

current index $i=10$;
Mem: $0,0,8,10,9$
Prev: $0,0,0,2,0,4,4,6,0,6,8$

Reminder:
mem[j] = k s.t. $s[k]$ is the smallest last number in an increasing subsequence of length j.
$\operatorname{prev}[j]$ = the second last number in the longest increasing subsequence ending at sea[j].

The Example:

Indices:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Seq:	0	8	4	12	2	10	6	14	1	9	5	13	3	11	7	15

current index $\mathrm{I}=11$;
Mem: $0,0,8,10,9,11$
Prev: $0,0,0,2,0,4,4,6,0,6,8,9$

Reminder:
mem[j] = k s.t. $s[k]$ is the smallest last number in an increasing subsequence of length j.
$\operatorname{prev}[j]$ = the second last number in the longest increasing subsequence ending at sea[j].

The Example:

Indices:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Seq:	0	8	4	12	2	10	6	14	1	9	5	13	3	11	7	15

Current index $i=12$;
Mem: $0,0,8,12,9,11$
Prev: $0,0,0,2,0,4,4,6,0,6,8,9,8$

Reminder:
mem[j] = k s.t. $s[k]$ is the smallest last number in an increasing subsequence of length j.
$\operatorname{prev}[j]$ = the second last number in the longest increasing subsequence ending at seg[j].

The Example:

Indices:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Seq:	0	8	4	12	2	10	6	14	1	9	5	13	3	11	7	15

current index $i=13$;
Mem: $0,0,8,12,9,13$
Prev: $0,0,0,2,0,4,4,6,0,6,8,9,8,9$

Reminder:
mem[j] = k s.t. $s[k]$ is the smallest last number in an increasing subsequence of length j.
$\operatorname{prev}[j]$ = the second last number in the longest increasing subsequence ending at sea[j].

The Example:

Indices:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Seq:	0	8	4	12	2	10	6	14	1	9	5	13	3	11	7	15

current index $i=14$;
Mem: $0,0,8,12,14,13$
Prev: $0,0,0,2,0,4,4,6,0,6,8,9,8,9,12$

Reminder:
mem[j] = k s.t. $s[k]$ is the smallest last number in an increasing subsequence of length j.
$\operatorname{prev}[j]$ = the second last number in the longest increasing subsequence ending at sea[j].

The Example:

Indices:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Seq:	0	8	4	12	2	10	6	14	1	9	5	13	3	11	7	15

current index $i=15$;
Mem: $0,0,8,12,14,13,15$
Prev: $0,0,0,2,0,4,4,6,0,6,8,9,8,9,12,13$

Reminder:
mem[j] = k s.t. $s[k]$ is the smallest last number in an increasing subsequence of length j.
$\operatorname{prev}[j]$ = the second last number in the longest increasing subsequence ending at sea[j].

The Example:

Indices:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Seq:	0	8	4	12	2	10	6	14	1	9	5	13	3	11	7	15

current index $i=15$;
Mem: $0,0,8,12,14,13$,
Prev: $0,0,0,2,0,4,4,6,0,6,8,9,8,9,12,13$
Longest Increasing Subsequence:
In reverse: 15

Reminder:
mem[j] = k s.t. $s[k]$ is the smallest last number in an increasing subsequence of length j.
$\operatorname{prev}[j]$ = the second last number in the longest increasing subsequence ending at sea[j].

The Example:

Indices:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Seq:	0	8	4	12	2	10	6	14	1	9	5	13	3	11	7	15

current index $i=15$;
Mem: $0,0,8,12,14,13,15$
Prev: $0,0,0,2,0,4,4,6,0,6,8,9,8,9,12$,
Longest Increasing Subsequence:
In reverse: 15, 11

Reminder:
mem[j] = k s.t. $s[k]$ is the smallest last number in an increasing subsequence of length j.
$\operatorname{prev}[j]$ = the second last number in the longest increasing subsequence ending at sea[j].

The Example:

Indices:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Sed:	0	8	4	12	2	10	6	14	1	9	5	13	3	11	7	15

current index $i=15$;
Mem: $0,0,8,12,14,13,15$
Prev: $0,0,0,2,0,4,4,6,0,6,8,9,8,9,12,13$
Longest Increasing Subsequence:
In reverse: 15, 11, 9

Reminder:
mem[j] = k s.t. $s[k]$ is the smallest last number in an increasing subsequence of length j.
$\operatorname{prev}[j]$ = the second last number in the longest increasing subsequence ending at sea[j].

The Example:

Indices:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Sed:	0	8	4	12	2	10	6	14	1	9	5	13	3	11	7	15

current index $i=15$;
Mem: $0,0,8,12,14,13,15$
Prev: $0,0,0,2,0,4,4,6,0,6,8,9,8,9,12,13$
Longest Increasing Subsequence:
In reverse: 15, 11, 9, 6

Reminder:
mem[j] = k s.t. $s[k]$ is the smallest last number in an increasing subsequence of length j.
$\operatorname{prev}[j]$ = the second last number in the longest increasing subsequence ending at sea[j].

The Example:

Indices:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Sed:	0	8	4	12	2	10	6	14	1	9	5	13	3	11	7	15

current index $i=15$;
Mem: $0,0,8,12,14,13,15$
Prev: $0,0,0,2,0,4,4,6,0,6,8,9,8,9,12,13$
Longest Increasing Subsequence:
In reverse: $15,11,9,6,2$

Reminder:
mem[j] = k s.t. $s[k]$ is the smallest last number in an increasing subsequence of length j.
$\operatorname{prev}[j]$ = the second last number in the longest increasing subsequence ending at sea[j].

The Example:

Indices:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Sed:	0	8	4	12	2	10	6	14	1	9	5	13	3	11	7	15

current index $\mathrm{I}=15$;
Mem: $0,0,8,12,14,13,15$
Prev: $0,0,0,2,0,4,4,6,0,6,8,9,8,9,12,13$
Longest Increasing Subsequence:
In reverse: $15,11,9,6,2,0$

Reminder:
mem[j] = k s.t. $s[k]$ is the smallest last number in an increasing subsequence of length j.
$\operatorname{prev}[j]$ = the second last number in the longest increasing subsequence ending at sea[j].

The Example:

Indices:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Sed:	0	8	4	12	2	10	6	14	1	9	5	13	3	11	7	15

current index $i=15$;
Mem: $0,0,8,12,14,13,15$
Prev: $0,0,0,2,0,4,4,6,0,6,8,9,8,9,12,13$
Longest Increasing Subsequence:
In reverse: 15, 11, 9, 6, 2, 0
Finally: $0,2,6,9,11,15$
Reminder:
mem[j] = k s.t. $s[k]$ is the smallest last number in an increasing subsequence of length j.
$\operatorname{prev}[j]$ = the second last number in the longest increasing subsequence ending at sea[j].

The code:

The Setup:

std::vector<int> mem(seq.size() + 1, -1), prev(seq.size(), -1); mem[0] = 0;
int length $=0$; //Length of current longest increasing subsequence

The code:

The Loop:

```
for (int i = 0; i < seq.size(); i++)
{
    int l = 0;
    {
    int r = length + 1;
    while (r - l > 1)
    {
        int mid = (l + r) / 2;
        if (seq[mem[mid]] < seq[i]) l = mid; // <= if increasing instead of strictly increasing
        else r = mid; // (Note: I haven't actually tested that)
    }
    prev[i] = mem[l];
    mem[l + 1] = i;
    if (l + 1 > length) length++;
    }
}
```


The code:

```
The Result:
std::vector<int> lis(length);
int index = mem[length];
//Return
while(length > 0)
{
    lis[length - 1] = seq[index];
    index = prev[index];
    length--;
}
return lis;
```

